

Outline

- Background
- Deep Space Exploration Today
- Management Culture Changes
- Risk Management as a Process
- Application Experiences
- Where are we going?

Risk Management in the Deep Space Project Environment

- Two kinds of projects
 - First of a Kind
 - Significant inheritance
- Application of a priori data
 - Minimal at best
 - "Lessons Learned"/ Expert Judgment approach

Yesterday's Approach

- Few Missions
 - JPL had one or two missions in implementation
 - Ames with Pioneer
- Management Approach
 - Primarily in-house
 - Experienced Project Teams learn on the job
 - Significant early failures on Ranger led to standardization of implementation process

Yesterday's Approach (Cont'd)

Approach to Mission Success

- Approach used on the previous mission the starting point for the next mission
- Rigorous/ expensive assurance process

◆ Technical Approach

- Conservative application of new design/ technology
- Design "rules", systems engineering processes
- Engineers mentored on the job in the JPL process

Yesterday's Approach (Cont'd)

Mission Operations Implementation

- Short missions (Mars, Venus, Lunar)
- Implementation Team provided strong technical operations team component
- Deep Space Network committed to a few mission
 - Incremental performance improvements
 - Managed by JPL
- Mission Operations complex managed by JPL
- Conservative use of flight autonomy fail safe approach
- Rudimentary (although high-tech at the time) software content

Then What?

- Viking, Voyager, Galileo, Cassini
- Push to Relax Government Dictation to Industry of How to do Business
- ◆ Better, Faster, Cheaper
- Many Small, Contained Missions
- ◆ ISO/ NASA NPG 7120.5

Viking, Voyager, Galileo, Cassini

- Complex technology, demanding designs
- Stretched the inheritance mode of implementation
- Result very successful, but:
 - applying the traditional conservative (risk-averse) approaches was very expensive
 - Programmatic Environment did not support billion dollar endeavors
- Recognized the need to share more of the work with industry
 - Magellan, Mars Observer
- Industry did things in different ways
- New risk areas

- Push to Relax Government Dictation to Industry of How to do Business
 - Standards are too expensive apply industry "best practices"
 - Streamline the acquisition/ oversight process
 - Result:
 - Some inefficiencies and cultural learning experiences
 - Some mistakes some leading to mission failure
 - Contemporary with Challenger
 - NASA inserts itself more intimately in the JPL implementation process
 - Risk Management as a defined process and specific activity is introduced.

• Better, Faster, Cheaper

- Small teams, Skunk-works approaches
- Short Development Period
- Limited Oversight trust me
- Capitalize on excess from last big missions
- Complements the previous relaxing of standards
- Be more risk-tolerant

Many Small, Contained Missions

- NASA Planetary Exploration Budget did not decline
- Put eggs in many more baskets
- Opened the process to non-JPL managed projects
- Introduced the PI (Principal Investigator)- led projects
- Results:
 - Some spectacular success
 - Depletion of expertise
 - Ate some of the seed corn
 - Some failure and realization that we really didn't accept failure after all

◆ ISO/ NASA NPG 7120.5

- Document your process and demonstrate that you follow it.
- Resulted in more documentation before, and more formal processes
- This was consistent with realizing that training was needed to replace the experience-base of the previous era
- Risk Management process borrowed from the Nuclear, Environmental industries and adapted to the one-of-a-kind nature for Space Flight projects
- Results:
 - Process implemented on all flight projects
 - Risk lists sprang up quickly
 - Risk Management Plans required and produced
 - Risk used as an independent assessment metric

Where Are We Today?

◆ Projects

- Some 20 25 active projects in Implementation
- Projects range in size from \$25M to \$750M
- Extensive training and mentoring to provide for lack of project management experience
- Documenting the way wee do business in a process structure
- Establishing practices, principles, and rules to allow insight into activities
- Independent Technical and Management Reviews provide management insight and encourage management involvement

Where Are We Today? (cont'd)

Programs

- Program Management delegated to Centers
- New Millennium, Mars, Navigator programs have Risk drivers

 need a Risk Management process unique to program
 characteristics

◆ Institution

- Desire to standardize process
- Improving Cost Estimation process with Risk-related considerations

RISK DATABASE

Project Team Identification and Assessment

Assess TOTAL RISK

Decisions

PROJECT RISK ENVIRONMENT

RISK ITEMS

Project Resources (Reserves)

Trade-offs

Risk Engineer
Analysis and Consistency Check

Project Team – Support

JPL Risk Management Process

Achieving Balanced Risk

RM Process Flow

Key Process Tools and Resources

Project Plan, PIP

Project Risk Management Plan

Risk <u>Ma</u>nagement

Tools

Risk ID,

Significant

Risk

List

Risk Reports

 Procedure:
 (Risk Management Handbook for JPL Projects)
 RM Plan Template

JPL Processes/ OSMS Support

Project Implementation Project Total Risk, Mitigation Options and Trade-Off Assessments

Identifying Risks

Pre-Project Proposal

- Technical Margins
- Project Risk Drivers
- Cost & Schedule
 Uncertainty Assessment

Project Planning

- Lessons Learned, etc.
- Design Principles
- WBS Analysis (work included, omitted, etc.)
- Schedule Analysis
- Reserves Analysis
- Design Baseline Risk Analysis (Trade-off studies, System FMEA, FTA, PRA, DDP, etc.)

Project Implementation

- Design Reviews
- Monthly Status Assessments
- Development tests
- Changes in metrics
- Risk reassessments and detailed analyses (Component FTAs, FMECAs, I/F FMEAs, etc.)
- Maturing design, mfg, ass'y, test, etc.
- Problem resolution
- Things happen

Expert Judgment Risk Owners

- Risk Manager
- Project Manager

Risk Identification

Qualitative Approach to RM

Assessing Risks

Risk Item "i"

Likelihood:

Relative scale, e.g., Low, medium, high

(from "no way" to "for sure")

Consequence:

Relative scale, e.g., Low, medium, high

(from "no sweat" to "total disaster")

Risk Measure:

on risk graph

Mitigation Effect:

"Mitigation Vector" on risk graph

Risk item "i"

Project Total Risk Position:

Qualitative Approach to RM *Making Decisions*

- Identify total risks
- Examine effectivity of mitigation options (example mitigation checklists in back-up)
- Implement proactive risk reduction

Project Total Risk Position:

- Impact to reserves
 - ->75% (?) from Primary Risks
 - ->But 15% from yellow risks can kill you
 - ->Cost of mitigations weighed against risk cost reductions
 - -> Proactive use of reserves where mitigation is risk-effective

Quantitative Approach to RM Assessing Risks

Likelihood:

Measured from 0 to 1 (from "no way" to "for sure") - pi

Consequence:

Measured as a percentage of impact on Project

resource element k - Iik

Project Risk Resource Elements:

Projects identify most sensitive

Typical resources at risk:

(1) Implementation Risk (\$, mass, power, memory)

(2) Mission Risk (impact on mission success)

Risk Measure:

Product of likelihood and consequence: pixlik

For each consequence category (k), probabilistic sum of $\mathbf{p_i x l_{ik}}$ over (i)

(For most practical cases, can assume risks and consequences are independent, and therefore

=[sum over all i]p_ixl_{ik})

Quantitative Approach to RM *Making Decisions*

PAGGICEGIATION RISK

*"P" is the likelihood that that particular resource will be sufficient to handle the known risks to the Project

Aggregating Risk Schedule Risk Analysis

Genesis Experience - Analysis provided by Futron Corporation

WBS Integrated resource-loaded Schedule Network

Monte Carlo Sim. Tool

Technical Risk Metrics An Example

 Examples: mass, power (in all forms), memory, bandwidth, throughput, pointing budget, noise, etc.

Identifying Risks

Pre-Project Proposal

- Technical Margins
- Project Risk Drivers
- Cost & Schedule
 Uncertainty Assessment

Project Planning

- Lessons Learned, etc.
- Design Principles
- WBS Analysis (work included, omitted, etc.)
- Schedule Analysis
- Reserves Analysis
- Design Baseline Risk Analysis (Trade-off studies, System FMEA, FTA, PRA, DDP, etc.)

Project Implementation

- Design Reviews
- Monthly Status Assessments
- Development tests
- Changes in metrics
- Risk reassessments and detailed analyses (Component FTAs, FMECAs, I/F FMEAs, etc.)
- Maturing design, mfg, ass'y, test, etc.
- Problem resolution
- Things happen

Expert Judgment Risk Owners

- Risk Manager
- Project Manager

Risk Identification

Qualitative Approach to RM

Assessing Risks

Risk Item "i"

Likelihood:

Relative scale, e.g., Low, medium, high

(from "no way" to "for sure")

Consequence:

Relative scale, e.g., Low, medium, high

(from "no sweat" to "total disaster")

Risk Measure:

on risk graph

Mitigation Effect:

"Mitigation Vector" on risk graph

Risk item "i"

Project Total Risk Position:

Qualitative Approach to RM *Making Decisions*

- Identify total risks
- Examine effectivity of mitigation options (example mitigation checklists in back-up)
- Implement proactive risk reduction

Project Total Risk Position:

- Impact to reserves
 - ->75% (?) from Primary Risks
 - ->But 15% from yellow risks can kill you
 - ->Cost of mitigations weighed against risk cost reductions
 - -> Proactive use of reserves where mitigation is risk-effective

Quantitative Approach to RM Assessing Risks

Likelihood:

Measured from 0 to 1 (from "no way" to "for sure") - pi

Consequence:

Measured as a percentage of impact on Project

resource element k - Iik

Project Risk Resource Elements:

Projects identify most sensitive

Typical resources at risk:

(1) Implementation Risk (\$, mass, power, memory)

(2) Mission Risk (impact on mission success)

Risk Measure:

Product of likelihood and consequence: pixlik

For each consequence category (k), probabilistic sum of $\mathbf{p_i x l_{ik}}$ over (i)

(For most practical cases, can assume risks and consequences are independent, and therefore

=[sum over all i]p_ixl_{ik})

Quantitative Approach to RM *Making Decisions*

PAGGICEGIATION RISK

*"P" is the likelihood that that particular resource will be sufficient to handle the known risks to the Project

Aggregating Risk Schedule Risk Analysis

Genesis Experience - Analysis provided by Futron Corporation

WBS Integrated resource-loaded Schedule Network

Monte Carlo Sim. Tool

Technical Risk Metrics An Example

 Examples: mass, power (in all forms), memory, bandwidth, throughput, pointing budget, noise, etc.

Where Are We Going?

Programmatic

- Integrating Project Resource and Risk management Processes through common data and process measurements (e.g., lien management)
- Developing methodology to effectively apply statistical risk assessment tools (PRA, etc.)

◆ Institution

- Developing standardized cross-project risk assessment criteria

 allow senior management to better understand project risk
 positions
- Integrating risk consideration into all aspects of managing our space flight activities

Conclusions

- Projects are Accepting Risk Management
 - Gaining confidence that RM will help
 - Most of the really effective methods come out of the projects' unique implementation approaches
- Training is Important
 - Training needs to be hands-on, interactive
- Experts are Good
 - But the project personnel must own the process

Acknowledgment

This Research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration